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Abstract Mass spectrometry (MS) and nuclear magnetic resonance (NMR) 
have evolved as the most common techniques in metabolomics 
studies, and each brings its own advantages and limitations. Unlike 
MS spectrometry, NMR spectroscopy is quantitative and does 
not require extra steps for sample preparation, such as separation 
or derivatization. Although the sensitivity of NMR spectroscopy 
has increased enormously and improvements continue to emerge 
steadily, this remains a weak point for NMR compared with MS. MS-
based metabolomics provides an excellent approach that can offer 
a combined sensitivity and selectivity platform for metabolomics 
research. Moreover, different MS approaches such as different 
ionization techniques and mass analyzer technology can be used in 
order to increase the number of metabolites that can be detected. In 
this chapter, the advantages, limitations, strengths, and weaknesses 
of NMR and MS as tools applicable to metabolomics research are 
highlighted.

Keywords (separated by “ - ”) NMR - MS - LC-MS - GC-MS - Metabolomics - Spectroscopy - 
Metabonomics



Jacob T. Bjerrum (ed.), Metabonomics: Methods and Protocols, Methods in Molecular Biology, vol. 1277, 
DOI 10.1007/978-1-4939-2377-9_13, © Springer Science+Business Media New York 2015

Chapter 13

The Strengths and Weaknesses of NMR Spectroscopy 
and Mass Spectrometry with Particular Focus 
on Metabolomics Research

Abdul-Hamid M. Emwas

Abstract

Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have evolved as the most common 
techniques in metabolomics studies, and each brings its own advantages and limitations. Unlike MS spec-
trometry, NMR spectroscopy is quantitative and does not require extra steps for sample preparation, such 
as separation or derivatization. Although the sensitivity of NMR spectroscopy has increased enormously 
and improvements continue to emerge steadily, this remains a weak point for NMR compared with 
MS. MS-based metabolomics provides an excellent approach that can offer a combined sensitivity and 
selectivity platform for metabolomics research. Moreover, different MS approaches such as different ion-
ization techniques and mass analyzer technology can be used in order to increase the number of metabo-
lites that can be detected. In this chapter, the advantages, limitations, strengths, and weaknesses of NMR 
and MS as tools applicable to metabolomics research are highlighted.

Key words NMR, MS, LC-MS, GC-MS, Metabolomics, Spectroscopy, Metabonomics

1  Introduction

Metabolomics is a technology-driven approach whereby recent 
developments in analytical tools, software, and statistical data analy-
sis push the field forwards. Various analytical techniques have been 
used, but nuclear magnetic resonance (NMR) and mass spectrome-
try (MS) are the most common analytical tools in metabolomics 
research [1–14]. The high reproducibility of NMR-based techniques 
and the high sensitivity and selectivity of MS-based techniques mean 
that these tools are superior over other analytical techniques. 
Figure 1 shows the increase in the number of both NMR-based and 
MS-based metabolomics publications during the past 12 years.

Metabolomics analyses can be separated into the categories of 
targeted or untargeted analysis. Untargeted analysis focuses on 
the metabolic profiling of the total complement of metabolites 
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(“fingerprint”) in a sample. NMR is commonly used in metabolomics 
fingerprinting studies. The targeted metabolomics approach 
focuses on the quantification and identification of selected meta
bolites, such as those involved in a particular metabolic pathway 
or others as the direct product of drug administering or of food 
intake. In targeted analysis, the metabolites under investigation 
are usually known, and the preparation of samples can be adjusted 
to reduce the effects of interference from associated metabolites. 
An MS-based metabolomics approach is usually the optimum 
method for targeted analysis.

Continuous development of MS methodology and machinery 
presents a highly specific analytical tool that can provide chemical 
information such as accurate mass, isotope distribution patterns for 
the determination of elemental formulae, structural elucidation 
though the characteristics of parent and fragment ions, identifica-
tion of chemicals using spectral matching to authentic compound 
data, and comparative concentration levels of different chemicals 
in mixed samples. In fact, MS-based metabolomics techniques pro-
vide an exceptional combination of sensitivity and selectivity offer-
ing a powerful platform for a wide range of metabolomics research. 
Compared with NMR spectroscopy, MS is superior in allowing 
analysis of secondary metabolites where the detection level is of 
picomole to femtomole [15, 16]. Moreover, the different MS 
technologies provide an array of operational principles that can be 
applied, such as different ionization techniques, so increasing the 
number of metabolites that can potentially be detected.

The high reproducibility along with the nondestructive and non-
invasive characteristics of NMR spectroscopy represents significant 
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Fig. 1 Number of NMR metabolomics and MS metabolomics publications; literature 
review was conducted using Web of Knowledge (http://apps.webofknowledge.com) 
with the keywords (a) (metabolomics and NMR) and (b) (metabolomics and MS)
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advantages for employing NMR in metabolomics research. Further, 
NMR can be employed for in vivo studies, referred to as magnetic 
resonance spectroscopy (MRS); any in  vitro metabolite pathway 
investigated by NMR spectroscopy can be pursued by in vivo stud-
ies using MRS. An NMR-based metabolomics approach involving 
isotopically labeled nuclei such as 13C and 15N can be used to obtain 
useful information about the balance of metabolites in a biological 
system and to monitor the flow of compounds through metabolic 
pathways. The high number of metabolites that can be detected 
simultaneously in a short time period of only a few minutes repre-
sents further advantage of using NMR spectroscopy in metabolo-
mics research. For example, a single proton NMR spectrum can 
quantify around 100 metabolites in a sample of human urine, this 
providing a comprehensive picture of human metabolic status at a 
given point in time [17]. Moreover, high-resolution magic-angle 
spinning (HRMAS) NMR spectroscopy can be used in the study of 
intact tissue samples whereby metabolites present in a tissue can be 
detected without the need for pre-preparation steps such as extrac-
tion [18–24].

Finally, it is crucial to remember that there is no single analytical 
platform that can perform a complete quantification and identification 
of all molecules within a sample. Table 1 demonstrates the advantages 
and the limitations of NMR spectroscopy compared to MS spectrom-
etry. Thus, employing different techniques such as different ionization 
methods coupled with liquid chromatography–mass spectrometry 
(LC-MS) and gas chromatography–mass spectrometry (GC-MS) in 
addition to one- and two-dimensional NMR experiments is necessary 
to maximize the identification of different metabolites within a com-
plex sample. For example, Wishart et al. employed different analytical 
platforms such as NMR, GC-MS, direct flow injection mass spec-
trometry (DFI/LC-MS/MS), inductively coupled plasma mass spec-
trometry (ICP-MS), and high-performance liquid chromatography 
(HPLC) to identify the human urine metabolome. The results show 
that a total of 209 different metabolites can be identified by NMR, in 
addition to 179 by GC-MS, 127 by DFI/LC-MS/MS, 40 by 
ICP-MS, and 10 by HPLC [25].

In this chapter, the advantages, limitations, strengths, and 
weaknesses of NMR and MS as tools applicable to metabolomics 
research are highlighted.

2  Materials

Compared with MS, NMR spectroscopy requires highly skilled 
and trained manpower operators, and it is more expensive to pur-
chase and maintain; it also demands a large space for the instru-
mentation (Fig. 2). Consequently, MS instruments are much more 
commonly found in clinical centers and hospitals compared with 
NMR spectrometers.
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Different biological samples are commonly used in metabolomics 
analysis including:

–– Bio-fluids.
–– Cell extracts.
–– Bacterial extracts.
–– Animal/human intact tissues.
–– Plant extracts.

2.1  Samples

Table 1 
The advantages and limitations of NMR spectroscopy and MS spectrometry as an analytical tool for 
metabolomics research adapted from ref. [14]

NMR Mass spectrometry

Sensitivity Low but can be improved with higher 
field strength, cryo- and microprobes, 
and dynamic nuclear polarization

High and detection limit reach 
nanomolar

Selectivity Even though few selective experiments 
are available such as selective TOCSY, 
it is in general used for nonselective 
analysis

Can be used for both selective and 
nonselective (targeted and 
nontargeted) analyses

Sample measurement All metabolites that have NMR 
concentration level can be detected in 
one measurement

Usually need different 
chromatography techniques for 
different classes of metabolites

Sample recovery Nondestructive; sample can be 
recovered and stored for a long time; 
several analyses can be carried out on 
the same sample

Destructive technique but need a 
small amount of sample

Reproducibility Very high Moderate

Sample preparation Need minimal sample preparation More demanding; needs different 
columns and optimization of 
ionization conditions

Tissue samples Yes, using HRMAS NMR tissue samples 
analyzed directly

No, requires tissue extraction

Number of detectable 
metabolites in urine 
sample

40–200 depending on spectral 
resolution

Could be more than 500 using 
different MS techniques

Target analysis Not relevant for targeted analysis Superior for targeted analysis

In vivo studies Yes—widely used for 1H magnetic 
resonance spectroscopy (and to a 
lesser degree 31P and 13C

No—although suggestion that 
desorption electrospray ionization 
(DESI) may be a useful way to 
sample tissues minimally invasively 
during surgery

[AU3]
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	 1.	 The chemicals most commonly used in metabolomics analyses 
include HPLC grade solvents such as methanol, ethanol, chlo-
roform, acetonitrile, and isopropanol.

	 2.	 Phosphate buffer is usually required for NMR analysis.
	 3.	 Solvents usually contain hydrogen atoms and the solvent 1H 

NMR peak would overwhelm the solute 1H peaks. 
Consequently, deuterated solvents should be used for NMR 

2.2  Chemicals[AU4]

Fig. 2 Typical NMR laboratory (KAUST NMR laboratory) where sufficient, separated space is required for location of NMR 
spectrometer (top); GC-MS where the GC-MS is usually small enough to be allocated on lab bench top (bottom)
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measurements; those most frequently used in metabolomics 
studies are D2O or (90:10 H2O: D2O) for polar metabolites 
and CDCl3 for lipid samples. In the case of strong solvent 
residual peaks such as (90:10 H2O: D2O), the “solvent sup-
pression” experimental technique would be necessary to sup-
press the residual solvent peak.

	 4.	 References for NMR spectra: 4,4-dimethyl-4-silapentane-1-
sulfonic acid (DSS) or its sodium salt and 3-trimethylsilylpro-
pionic acid (TSP) are normally used for samples dissolve in 
D2O or 90:10 H2O: D2O, and tetramethylsilane (TMS) is the 
most commonly used in organic solvents such as chloroform.

	 1.	 NMR magnets: Even though an ultrahigh magnetic field NMR 
spectrometer, such as one set at 950 MHz, will offer better 
resolution and higher sensitivity, such equipment is prohibi-
tively expensive and the maintenance is similarly costly. 
Consequently, most NMR-based metabolomics studies have 
been conducted using 600 and 500 MHz NMR spectrometers 
that are commonly available in research institutes and offer a 
good compromise between resolution, sensitivity, and cost.

	 2.	 NMR probes: Different NMR probes can be used for particu-
lar applications and for the detection of different nuclei. 
Examples of commercial NMR probes that have commonly 
been used in metabolomics research include:

	(a)	Double Resonance Broad Band Probes (BBO and BBOF) 
often called Broad Band Inverse Probes. These are widely 
used in experiments such as heteronuclear 2D experiments 
involving single-quantum coherence (HSQC), heteronu-
clear multiple-quantum correlation (HMQC), and hetero-
nuclear multiple bond correlation (HMBC).

	(b)	Triple Resonance Broad Band Probe (TBI).
TBI can be used for all BBO applications, the extra chan-
nel bringing the advantage of being able to study another 
X-nucleus, so providing the capability for study of organo-
metallic compounds and metalloproteins using 1H, 13C, 
and another metal-nucleus.

	(c)	Double Resonance Broadband Probe (BBI). Tunable to a 
wide range of frequencies; used for detection of multinu-
clear experiments optimized for 1H applications.

	(d)	Triple Resonance Broad Band Probe (TBO). TBO probe 
has features similar to those of BBI probe but with one 
extra channel.

	(e)	Triple Resonance Probe (TXI). Provides the opportunity 
to pulse for up to three or four nuclei in one experiment; 
used extensively for NMR structural determination of bio-
logical macromolecules.

2.3  NMR Equipment
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	(f)	 Triple Resonance CryoProbe (TCI) (used mainly for pro-
tein applications but can also be used for metabolomics). 
The Probe is composed of three completely independent 
channels (in addition to a lock channel) that can be used 
for simultaneous decoupling on multiple nuclei, such as 
15N and 13C. It is a powerful probe for multidimensional 
experiments, whereby pulsing up to four nuclei in one 
experiment is possible. Consequently, it is used mainly for 
NMR structural determination of biological macromole-
cules such as proteins.

	(g)	MicroProbes (1  mm TXI, 1.7  mm TXI)—small volume 
probes (useful for samples of a small size).

	 1.	 MS components: the MS instrument consists of three major 
components.
	(a)	Ion source: ionization part (produces gaseous ions).
	(b)	Analyzer: main function is to separate ions into distinctive 

mass components on the basis of mass-to-charge ratio (m/z).
	(c)	Detector system: detects ions based on their m/z and 

records relative abundance of each resolved ion.

The MS instrument also has other important components 
including a system to insert samples into the ion source  
and a computer to capture and analyze the data, as well as 
compare the spectra to reference MS database libraries. 
There are several ionization methods including EI (electron 
impact), CI (chemical ionization), MALDI (matrix-assisted 
laser desorption ionization), ESI (electrospray ionization), 
FAB (fast-atom bombardment), SIMS (resonance ioniza-
tion), PD (plasma-desorption ionization), LIMS (laser ion-
ization), and RIMS (resonance ionization). Application of 
each of these methods brings its own advantages and limi-
tations. Sample analysis could be carried out using different 
types of analyzer such as time of flight (TOF), quadrupole, 
ion trap, magnetic sector, and Fourier transform mass spec-
trometry. It is beyond the scope of this chapter to give a 
detailed description of the application, advantages, and dis-
advantages of each method of ionization or mass analysis. 
Examples of LC-MS and GC-MS equipments that are 
available in our analytical core lab are presented in the 
following sections.

	 2.	 LC-MS equipment.
	 (a)	 TSQ Vantage, triple quadruple MS.
	 (b)	Loading pump, transcend system.
	 (c)	 Valve interface model.
	 (d)	Accela PDA detector.
	 (e)	 CTC autosampler equipped with injector valve.	

2.4  MS Equipment
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	 3.	 GC-MS equipment.
	 (a)	 7890 GC.
	 (b)	7683 Autosampler.
	 (c)	 5975 C quadrupole MSD.
	 (d)	Trace GC ultra.
	 (e)	 Triplus autosampler.
	 (f)	 TSQ Quantum, triple quadrupole MS.
	 (g)	Microtof II MS.
	 (h)	GC Capillary Column: DB-5MS.

3  Methods

�NMR spectroscopy is a powerful analytical tool that has been used 
mainly in chemistry for the identification and quantification of the 
chemical composition of a given sample. The applications of NMR 
spectroscopy are not limited to liquid samples but can also be used 
on solid [26–31], gas phase [32–36], and tissue samples [28, 29, 
37–49]. Moreover, as well as its main applications in molecular 
identification and structural elucidation, NMR can also be used to 
study the physical and chemical properties of molecules, such as 
electron density and molecular dynamics [50–57]. Consequently, 
NMR has become the main tool for structural biology studies as it 
enables researchers to study molecular structures as well as molecu-
lar dynamics under biological conditions. Moreover, NMR spec-
troscopy has been employed in a wide range of research areas 
including structural biology, organic chemistry, inorganic chemis-
try, biochemistry, physics, biology, polymers, and drug discovery 
[9, 41, 58–75]. NMR spectroscopy has been proposed as one of 
the most relevant methods in metabolomics applications, for 
example, as powerful diagnostic method for a wide range of human 
diseases [11, 14, 76–87]. Low sensitivity is the inherent disadvan-
tage and the foremost challenge for the application of NMR in 
biomedical research. Continuous developments in the relevant 
machinery such as a higher magnetic field strength [88], cryogeni-
cally cooled probes [89], and microprobes [90] have significantly 
enhanced the sensitivity of NMR. The dynamic nuclear polariza-
tion (DNP) approach is one of the most efficient developments 
[91] that has been used successfully to enhance NMR sensitivity in 
imaging and spectroscopy [92–95].

The applications of NMR spectroscopy are not limited to liquid 
and solid samples, but extend to intact tissue samples with use of 
high-resolution magic-angle spinning (HRMAS) NMR spectros-
copy. By spinning samples at an angle of 54.74°—the “magic 

3.1  NMR 
Spectroscopy

3.1.1  High-Resolution 
Magic-Angle Spinning 
(HRMAS) NMR 
Spectroscopy
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angle”—to the magnetic field and at high speed, spectra can be 
obtained with a resolution comparable to that of solution-state 
NMR spectra. Using this method, the chemical composition of tis-
sue samples can be detected spontaneously without the need for 
pre-preparation steps such as extraction [18, 96]. In an NMR-
based metabolomics approach, this technique is helpful in offering 
a correlation between the metabolic profiling of bio-fluids and the 
histology of specific tissues. Consequently, HRMAS NMR spec-
troscopy has been used to study the metabolomic balance of small 
intact tissue samples [97] including brain [98], kidney [99], liver 
[100], and testicular tissues [101]. HRMAS has recently been used 
in meningioma biopsies as a potential diagnostic tool for the dif-
ferentiation of typical meningiomas and benign tissues [102]. 
Recently, Ying-Lan Zhao and coworkers have employed HRMAS 
spectroscopy in conjunction with principal component analysis 
(PCA), partial least squares discriminant analysis (PLS-DA), and 
orthogonal projection to latent structure with discriminant analysis 
(OPLS-DA) to investigate the metabolic profile of human rectal 
cancer tissue collected from 127 patients and compare these with 
47 samples collected from healthy control subjects [103]. The 
results revealed a clear separation between the samples from 
patients and those from the healthy control subjects. Several distin-
guishing metabolites were identified and correlated to different 
stages of rectal cancer tissues, so demonstrating the possibility of 
using metabolite biomarkers to follow the progression of rectal 
cancer. Moreover, a total of 38 differential metabolites were suc-
cessfully identified, and 16 of them were found to be closely cor-
related with a particular stage of rectal cancer. The results 
demonstrate that, compared with healthy control samples, the 
concentration levels of several metabolites including lactate, threo-
nine, acetate, glutathione, uracil, succinate, serine, formate, lysine, 
and tyrosine are found to be elevated in cancer tissue samples from 
patients, whereas the levels of other metabolites such as turrine, 
creatine, betaine, myo-inositol, phosphocreatine, and 
dimethylglycine are found to decrease [103].

Although NMR spectroscopy has been used in numerous multidi-
mensional experiments with different detectable nuclei, one-
dimensional (1D) proton (1H) NMR remains the most usable and 
useful technique, especially for metabolomics studies. However, 
due to the narrow range of chemical shift (10  ppm), 1H NMR 
spectra from overlapped signals usually persist, and this leads to 
uncertainty in the spectral assignments. Figure 3 shows the proton 
NMR spectrum of a sample composed of two simple molecules, 
n-propanol and n-butanol. As can be seen from the figure, the 
signals for the methyl groups for both n-propanol and n-butanol 
are observed at 0.92 ppm as an overlapped signal and cannot be 

[AU5]

3.1.2  One-Dimensional 
(1D) NMR Spectroscopy
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resolved by simple 1D NMR spectroscopy. Moreover, overlapping 
signals were also obtained at 1.55 ppm. These overlapping signals 
are related to the -CH2-groups from the two molecules, but it is 
not possible to ascribe a particular signal to a particular molecule 
based on the simple 1D proton NMR spectrum. Other nuclei such 
as carbon and nitrogen have a wider range of NMR chemical shift 
but bring other limitations. For example, one-dimensional phos-
phorous (31P) NMR spectroscopy has a few advantages such as the 
100 % natural abundance of the 31P nuclei, a wide chemical shift 
range, and high sensitivity. Thus, 31P NMR spectroscopy is com-
monly used to study phospholipids and metabolites involved in 
energy metabolism [104, 105]. However, the fact that most 
metabolites do not contain phosphorus represents the main limita-
tion of 31P NMR spectroscopy. Generally, the spectral width of 
one-dimensional carbon (13C) NMR spectra is more than 200 ppm 
leading to wider spectral dispersion. 13C NMR spectroscopy is par-
ticularly informative in molecular identification and for structural 
elucidation. However, the low natural abundance of the 13C nuclei 
(1.1 %) as well as a low sensitivity has hindered the use of this iso-
tope in NMR-based metabolomics applications. Different NMR 
approaches have been developed to enhance the 13C NMR signals. 
For example, Distortionless Enhancement by Polarization Transfer 

Fig. 3 700 MHz proton NMR spectrum of a sample composed of two simple molecules, n-propanol and n-
butanol, dissolved in CDCl3 recorded at 298 K
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(DEPT) is a powerful means of increasing the sensitivity of NMR 
spectra whereby the 13C signal intensity can be enhanced by a fac-
tor of four. DEPT NMR experiments are also useful for distin-
guishing between CH2 and (CH, CH3), as the 13C NMR spectrum 
of DEPT-135, for instance, yields CH2 peaks with a negative inten-
sity and CH and CH3 peaks with a positive intensity (Fig. 4).

15N NMR spectroscopy is very useful in structural biology 
including the study of proteins, RNA, and DNA structure and 
dynamics and also investigation of protein–metal coordination, 
protein–protein, and protein–ligand interaction [106–112]. 
However, due mainly to the low natural abundance of 15N at only 
0.37 % and a low sensitivity, this approach is expected to be less 
useful in metabolomics studies.

Two-dimensional (2D) NMR spectroscopy can be used to over-
come the problem of overlapping resonances in proton 1D NMR 
spectra, leading to the detection and assignment of a greater num-
ber of metabolites than is possible with the 1D method. 2D NMR 
spectroscopy is based on through space spin coupling or through 
bond coupling, the former being used mainly for structural eluci-
dation and the latter for molecular identification. Through bond 
correlation, NMR spectroscopy divides into two main categories: 
homonuclear, being mostly (1H–1H) such as correlation spectros-
copy (COSY) [113] and total correlation spectroscopy (TOCSY) 
[114], and heteronuclear, such as (1H–13C). Both the homonuclear 

3.1.3  Two-Dimensional 
(2D) NMR Spectroscopy

Fig. 4 DEPT-135 13C NMR spectrum of a mixed sample composed of n-propanol 
and n-butanol in CDCL3 at 298 K. The CH3 signals in the opposite direction of the 
CH2 signals providing a powerful approach to resolve the CH3 signals from CH2 
ones are illustrated
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and heteronuclear categories have been used in NMR-based 
metabolomics studies for signal isolation and to support the assign-
ment of metabolites [115–119]. Other 2D methods, such as two-
dimensional J-resolved NMR spectroscopy (J-Res) [120], and 
diffusion-ordered spectroscopy (DOSY) [121] have been used in 
NMR-based metabolomics studies. A combination of COSY and 
DOSY was employed to study metabolic changes in dystrophic 
heart tissue for samples collected from a mouse model of muscular 
dystrophy [122]. Heteronuclear 2D experiments involving single-
quantum coherence (HSQC), heteronuclear multiple-quantum 
correlation (HMQC), and heteronuclear multiple bond correla-
tion (HMBC) have a high degree of resolution in the second 
dimension mostly using (13C) and have been employed for metab-
olite discrimination and identification [123].

Although 2D NMR experiments improve the dispersing of 
the NMR signals, increased acquisition time, data size, and com-
plexity in data analysis limit frequent use of this approach. However, 
the continuous development of NMR machinery and new faster 
NMR method of signal acquisition and data processing are lead-
ing to the increased use of 2D techniques in metabolomics studies 
[113, 124–126].

COSY was the first technique of 2D homonuclear correlation spec-
troscopy and has been used over many years for molecular identifi-
cation and for structural elucidation [127–130]. COSY has been 
employed in metabolomics research as it benefits from a relatively 
short experimental time with the possibility of running a 2D spec-
trum in only a few minutes and providing far more information 
than is gained from 1D NMR spectra. The simplest COSY pulse 
sequence consists of a single 90° RF pulse followed by evolution 
time (t1) and then a second 90° pulse followed by a measurement 
period (t2). The COSY spectrum comprises a homonuclear, mostly 
(1H–1H), correlation spectrum in which the cross peaks in the 2D 
spectrum indicate through bond couplings between pairs of nuclei. 
The cross peaks represent through bond magnetization transfer 
between two nuclei. This provides a powerful tool for the identifi-
cation of peaks that belong to the same molecule in samples com-
posed of many molecules, as would be the case for metabolites in 
biological samples. As through bond correlation occurs only within 
the same molecule, COSY NMR spectroscopy has been used in a 
wide range of NMR-based metabolomics applications [131–135]. 
Figure 5 shows the 2D COSY NMR spectrum from which the cor-
relation between coupled protons can be used to assign an NMR 
signal and to identify the corresponding molecule. However, for 
multiple overlapped signals, 2D COSY is not powerful enough to 
allow assignment of the individual signals. Other 2D NMR experi-
ments, such as total correlation spectroscopy (TOCSY), can be 
used to assist with signal assignment.

3.1.4  Correlation 
Spectroscopy (COSY)
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TOCSY or HOHAHA (Homonuclear Hartmann Hahn) is a simi-
lar approach to COSY, whereby the chemical shift of a given 
nucleus such as H is correlated with the chemical shift of other Hs 
of the same compound which are within the spin system (unbro-
ken chain of couplings) of the atom. Similar to COSY, whereby the 
correlation between pairs of atoms (protons) in nearby carbon 
atoms that are connected by scalar coupling would be observed, 
the TOCSY spectrum shows the cross peaks not only for protons 
which are directly coupled but also for protons which are connected 
by a chain of couplings. For example, if proton A is coupled with 
proton B and proton B coupled with proton C, the COSY spec-
trum would express only the coupling A with B, whereas the 
TOCSY spectrum would display the coupling of A with both B and 
C. Figure 6 shows the stack plot of TOCSY (blue) and the COSY 
spectrum (red): more blue peaks can be observed, these representing 
every proton signal coupled with proton signals related to the same 
molecule (n-propanol and n-butanol). This shows that TOCSY 
spectrum can be used for resolving overlapped peaks that belong 
to different molecules. For instance, Fig.  7 shows an extended 
region of Fig.  6. Clearly, propanol peaks can be resolved from 
butanol peaks by simply detecting the signals that share four cross-
correlation peaks (butanol, green arrow) compared with signals 

Total Correlation 
Spectroscopy (TOCSY)

Fig. 5 700 MHz 2D COSY NMR spectrum of n-butanol and n-propanol in CDCl3
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that share only three cross peaks (propanol, black arrow). 
Assignment of peaks is accomplished by drawing a projection from 
the cross peak to 1D spectrum in the plot axis (Fig. 8). The arrow 
projection that connects the green arrow (butanol) with the signal 
at 3.584 ppm confirms that this peak refers to butanol, not propanol, 
and the second projection that correlates the signal at 1.564 ppm 
with the black arrow confirms that this peak corresponds to the 
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Fig. 6 (a) TOCSY NMR spectrum and (b) stack plot of TOCSY (blue) and COSY spectrum (red ) for a mixed 
sample of n-propanol and n-butanol in CDCL3. A greater number of blue peaks (TOCSY) can be observed than 
COSY peaks (red ). As anticipated, the COSY spectrum shows only the coupling between Ap and Bp, while the 
TOCSY spectrum displays the coupling of Ap with both Bp and Cp
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propanol molecule (Fig. 7). Confirmation of one peak as propanol 
and another peak as butanol would be sufficient to complete the 
assignment of all signals for both molecules using the TOCSY 
spectrum (Fig.  8). The assignment of 1H NMR signals can be 
used in combination with other 2D NMR techniques, such as het-
eronuclear correlation spectroscopy. This will assist in the assign-
ment of other nuclei signals such as those of the carbon NMR 
spectrum.

Bond correlation can also be used for correlation between two dif-
ferent types of nuclei (commonly 1H with 13C or 15N), which are 
separated by one bond. For example, the 1H–13C HSQC spectrum 
coordinates the chemical shift of protons and the corresponding 
bonded carbon, whereby only one cross peak will be obtained per 
pair of coupled atoms. Thus, HSQC offers a particularly informative 
approach for the assignment of signals, especially for the assignment 
of overlapping proton signals. Figure 9 shows the 1H–13C HSQC of 
a mixture of n-butanol and n-propanol spectra in CDCL3. The fig-
ure demonstrates the efficacy of HSQC in resolving overlapped pro-
ton signals. For example, the extended region (A) resolved the 
overlapped proton signal at 0.91 ppm. Moreover, HSQC spectra 
can be used to assign both proton and carbon NMR spectra.

HSQC is also a useful technique to reduce the experimental 
time for nuclei with low sensitivity and low natural abundances, 

3.1.5  Heteronuclear 
Single-Quantum 
Correlation 
Spectroscopy (HSQC)

Fig. 7 Extended region of Fig. 6a
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such as 13C and 15N, whereas the magnetization from the more 
sensitive nucleus I (usually 1H) transferred to the less sensitive 
nucleus, such as 13C and 15N. 1H–15N HSQC spectroscopy is one 
of the most important and common experimental techniques in 
the assignment of protein signals, as the assignment of NMR sig-
nals is the prerequisite step for the study of protein structure and 
dynamics [136–139]. Two-dimensional multiple-quantum corre-
lation spectroscopy (HMQC) is a 2D heteronuclear correlation 
NMR approach similar to HSQC spectroscopy and provides iden-
tical information with a similar spectrum but uses different meth-
ods. Both HSQC and HMQC have been used in NMR-based 
metabolomics research, with HSQC being considered superior for 
larger molecules such as proteins [117, 133, 140].

HMBC (Heteronuclear Multiple Bond Correlation) is a 2D 
heteronuclear correlation technique that correlates the chemical 
shift of two different types of nuclei (i.e., 13C and 1H) that are sepa-
rated from each other by two or more chemical bonds. The chemi-
cal shift of one nucleus, such as 1H, is usually detected in the 
directly measured dimension (F2), and the chemical shift of the 

Fig. 8 Projection of the arrow that connects the n-butanol (green) and n-propanol 
(black) TOCSY cross peak with the corresponding 1D proton NMR spectrum
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other nucleus, such as 13C (X-nucleus or heteronucleus), is recorded 
in the indirect dimension, as shown in Fig. 10. In this approach, a 
low-pass filtration is used to eliminate the single bond correlation 
known as “single-quantum coherence” corresponding with single 
bond interactions. For example, (1H–13C) HMBC eliminates the 
single C–H bond correlation while correlating the chemical shift of 
H with C when separated by two or three bonds and, in some 
cases, with even more distant ones. Thus, (1H–13C) HMBC is usu-
ally used for the assignment of signals of quaternary and carbonyl 
carbons. The combination of HMBC with HSQC or HMQC pro-
vides a powerful approach for assignment of signals. Figure  11 
shows both HMQC (red) and HMBC (blue), the seven red cross 
peaks being associated with the seven carbons in both n-propanol 
and n-butanol and the sixteen blue cross peaks being associated 
with the long bond correlation interactions. This figure demon-
strates the power of combining and integrating the information 
from 2D NMR experiments for spectral assignment. The HMQC 
spectrum can be used to distinguish an overlapped signal from a 
separated one. For example, the proton multiplet signals observed 
around 0.92 ppm coupled with the two carbon peaks at 10.07 and 

Fig. 9 1H–13C HSQC spectrum of a mixture of n-butanol and n-propanol dissolved in CDCl3 recorded using 
700  MHz Bruker Avance (III) NMR spectrometer. The extended region (A) of the methyl group signals at 
0.92 ppm indicates that this signal was resolved into two 13C signals in the second dimension, one at 10 and 
the other at 13.85 ppm
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13.79  ppm confirm that the proton NMR signal is indeed two 
overlapping ones. Similarly, the proton multiplet around 1.55 ppm 
is coupled with two carbon signals, while each one of the remain-
ing proton signals at 1.37, 3.54, and 3.58 ppm is coupled with 
only one carbon signal. Moreover, HMBC and HSQC spectra can 
be used to separate and assign n-butanol peaks from n-propanol 
ones. For instance, the carbon HSQC cross peak (red) connecting 
the carbon signal at 25.67 ppm with proton resonance at 1.564 is 
aligned with two HMBC cross peaks (black arrows), so assigning 
the three peaks to the n-propanol molecule while the HSQC (red) 
aligned with three more blue HMBC cross peaks assigns these 
peaks to the n-butanol molecule (green arrows; see Fig.  12). 
Figure 13 demonstrates example models of chemical bond connec-
tions of n-butanol that can be studied by using 2D experiments for 
both homonuclear correlation and heteronuclear correlation. 
Details of the way in which these 2D experiments can be used to 
assign the proton and carbon NMR spectra of n-propanol and 
n-butanol are presented and the complete proton and carbon 
assignments provided in Table 2.

Fig. 10 13C-1H HSQC HMBC spectrum of a mixed sample composed of n-propanol and n-butanol in CDCl3. The 
long correlation between the 1D proton spectrum (top projection) and the 13C DEPT-135 spectrum (see Fig. 4, 
left projection) is illustrated
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Mass spectrometry (MS) is a powerful technique used mainly for 
the identification of unknown compounds and for the quantifica-
tion of known molecules within a sample [71, 141–146]. As for 
NMR [28, 57, 147–152] and X-rays [153–160], it can also be 
used for structural elucidation and for study of the chemical 
properties of materials under investigation [161–166]. Due to its 
high sensitivity and selectivity, MS provides an important analytical 
platform for profiling metabolites in mixed samples, such as bio-
logical samples. Moreover, MS can detect ions that do not contain 
protons or carbon, such as metal ions. However, no MS method is 
perfect for the detection of all classes of metabolites, and so more 
than one method must be employed for comprehensive metabolic 
profiling. Figure 14 shows the main components of the MS instru-
ment with the different sources of ionization and types of mass 
analyzer that can be used for the detection of different classes of 
molecule. The advantages of using GC-MS, for example, include 
high separation efficiency and reproducible retention times that 
may be exchanged between different laboratories for data compari-
son using the retention index concept with retention time as a 
marker [167]. However, the inherent limitation of GC-MS is the 
fact that it detects only volatile compounds or compounds that can 
be derivatized to become volatile. Furthermore, MS cannot detect 
all metabolites, as some metabolites do not ionize with certain 

3.2  Mass 
Spectrometry (MS)

Fig. 11 Stack plot of 13C-1H HSQC spectrum (red ) and HMBC spectrum (blue) of a mixed sample of n-propanol 
and n-butanol in CDCl3
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Fig. 12 Extended region of Fig. 11

Fig. 13 The bond connection of n-butanol that can be studied by using different 
2D NMR experiments for both a homonuclear correlation and a heteronuclear 
correlation

ionization methods. The dynamic range of the MS detector is still 
only three to four orders of magnitude, whereas the range of 
metabolite concentration is usually much larger, and no detector 
exists that can detect all metabolites. A general challenge in the 
metabolic proofing of biological samples is the fact that many 
metabolites have not yet been fully identified. For example, among 
the 869 different metabolites that have been detected in tomato, 
494 are not found in the common metabolite databases [168].

The number and class of metabolites that can be detected by 
mass spectrometry depend on the choice of ionization mode. No 
single ionization method can cover all metabolite classes, such as 
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Table 2 
Complete assignment of 1H and 13C NMR peaks for both n-propanol and n-butanol  
using data from a number of 1D and 2D NMR experiments

Chemical shift of 1H NMR signal ppm Chemical shift of 13C NMR signals ppm

Ap 0.916 10.01

Ab 0.926 13.79

Bb 1.370 18.95

Cb 1.533 34.56

Bp 1.563 25.67

Cp 3.539 64.05

Db 3.584 62.13

CH3–CH2–CH2–OH (n-propanol)

CH3 – CH2 – CH2 – OH(n-propanol)

BpAp Cp

CH3–CH2–CH2–CH2–OH (n-butanol)

CH3 – CH2 – CH2 – CH2 – OH (n-butanol)

Ab Cb DbBb

Fig. 14 Schematic plot of MS components including EI (electron impact), CI (chemical ionization), MALDI (matrix-
assisted laser desorption ionization), ESI (electrospray ionization), FAB (fast-atom bombardment), SIMS (reso-
nance ionization), PD (plasma-desorption ionization), LIMS (laser ionization), and RIMS (resonance ionization)
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polar, nonpolar neutral, and ionic. Consequently, different ionization 
methods should be used independently to maximize the number 
of metabolites detected. For example, in LC-MS analysis, electro-
spray ionization (ESI) in positive mode is the most common 
mode that can effectively ionize a wide range of medium-sized 
polar molecules, whereas the negative ionization mode is  more 
powerful for certain metabolite classes, such as carbohydrates and 
organic acids. For example, it was reported that use of both 
atmospheric-pressure chemical ionization (APCI) and ESI 
increased the coverage of the erythrocyte metabolome by 34 %. 
It has been reported that by using a set of different complemen-
tary methods of GC-MS and LC-MS up to 100–500 metabolites 
can be detected in a targeted analytical approach for blood sam-
ples, and about 600–1,000 can be detected in a fingerprinting 
mode [169–171]. It is important to note that the strategy for 
metabolite identification in LC-MS is different from that in 
GC-MS, in which usually only the molecular ion is detected and 
additional MS/MS experiments are required to gain information 
about the identity and structure of the metabolites.

LC-MS comprises two powerful analytical tools, high-performance 
liquid chromatography (HPLC, known as high-pressure liquid 
chromatography) and mass spectrometry. When combined, 
LC-MS represents a very powerful analytical tool for the separa-
tion, identification, and quantification of molecules in a mixed 
sample. The HPLC technique separates molecules first based on 
different physical and chemical properties such as molecular size, 
charge, polarity, and affinity toward other molecules. As for other 
chromatography techniques, HPLC consists of a stationary phase 
and a mobile phase. The stationary phase involves the use of mate-
rials such as silica gel that slow down the movement of molecules 
to varying extents according to molecular size, so allowing separa-
tion of molecules based on size differences. The mobile phase 
comprises the solution containing the sample mixture, and this 
travels through the stationary phase (chromatography column) 
where separation of molecules occurs. Column chromatography 
can be used to purify individual chemical compounds from mix-
tures. Different samples require different columns, proteins, and 
peptide samples, for example, requiring different columns from 
those needed for samples of small molecules typical of metabolo-
mics studies. Once the analytes are separated, they pass through 
the mass spectrometer analyzer where they are detected based on 
the mass-to-charge ratio, and the intensity of each resultant line 
corresponds to relative concentration of each molecule.

On the basis of its ability to separate and detect a wide range of 
molecules, LC-MS is probably the most widely used mass spectrom-
etry technology, especially in the biosciences. LC-MS is a very adaptable 

3.2.1  Liquid 
Chromatography–Mass 
Spectrometry (LC-MS)
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tool for carrying out the majority of metabolite profiling studies, 
allowing both quantitative and structural information to be obtained 
with high level of sensitivity. Different separation methods can be 
used to separate different classes of metabolite. For example, the 
reversed-phase (RP) gradient chromatography method has been the 
most commonly used separation method in LC-MS studies for global 
metabolite profiling [145, 172]. However, this is not the most appro-
priate method for polar and/or ionic species, which includes many 
important metabolites (organic acids or amino acids). These metabo-
lites represent highly significant components in biochemical path-
ways, and their evaluation may be important in detecting critical 
metabolic states, such as inborn errors of metabolism and metabolic 
syndrome. Hydrophilic interaction chromatography (HILIC) is an 
alternative method that can be used to ionize polar metabolites, so 
increasing the breadth of metabolites detected [173]. In order to 
maximize the coverage of metabolites being profiled, the sample can 
be analyzed twice, either using RP and HILIC separately or using a 
column-switching approach of two-dimensional analysis in an 
“orthogonal” combination of HILIC and RP-LC [174–177]. 
Although the combined use of RP and HILIC is the preferable ion-
ization method for many metabolites, this approach does not cover 
the whole range of metabolite polarities for biological samples such as 
urine [145]. Consequently, other ionization methods such as positive 
and negative electrospray ionization (ESI) modes and atmospheric-
pressure chemical ionization (APCI) are recommended in order to 
maximize the breadth of detection of different metabolites in a bio-
logical sample [178]. Considering all these possibilities, analyses in 
eight different modes (eight separate runs) are required for 
comprehensive profiling of metabolites. These combinations widen 
the applications of LC-MS in metabolomics, and in fact, both tar-
geted and nontargeted metabolomics analyses have increasingly been 
conducted using different methods of LC-MS [172, 179–188].

GC-MS is a novel tool for the analysis of volatile molecules, with a 
high-resolution and reproducible chromatographic separations 
due to the modern capillary GC, and these features render it well 
suited for the analysis of complex metabolic mixtures. As for 
LC-MS, GC-MS consists of two powerful analytical methods, gas 
chromatography and mass spectrometry. Together, these methods 
provide one of the most powerful methods of separation that can 
be used to provide qualitative and quantitative information about 
volatile compounds. The sample first goes through the gas chro-
matography unit where high-resolution separation of volatile 
organic compounds in a mixture is accomplished in the gas phase. 
The GC unit is composed mainly from columns, basically a tube 
which generally varies in length from less than 2 m up to 60 m or 
more, with a diameter ranging from 10 to 30 cm.

3.2.2  Gas 
Chromatography–Mass 
Spectrometry GC-MS
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Different kinds of GC columns exist, such as packed and capillary 
tubes, which are designed to separate different kinds of samples. 
Packed tubes may be of stainless steel, glass, or fused silica and are 
usually formed as coils in order that they fit into an oven for high-
temperature experiments, at around 250 °C. An inert gas, such as 
helium, is blown through the column; as the sample is inserted 
into the column, it becomes vaporized and the volatile molecules 
are pushed though the column by the helium. At the beginning, all 
the molecules move together but certain of them move slower 
than others, based on molecular weight and size. Smaller mole-
cules travel faster than larger molecules, and as they progress 
through the column, the molecules continue to separate from each 
other and eventually emerge from the column as different compo-
nents, so providing an effective approach to separation.

As the molecules exit the GC column, they are introduced into 
the MS unit where they are ionized using an ionization method 
such as an electron beam. The ions formed from a specific mole-
cule will depend on the nature of that molecule, and both ionized 
molecules and ion fragments of the molecule are useable for distin-
guishing and identifying the components of a mixture at the 
molecular level based on the mass-to-charge ratio. Moreover, qual-
itative information about the components of a mixture can be 
obtained by measuring the absolute intensity of the peaks, where 
the highest peak is taken to represent 100 % abundance and used 
as reference for other peaks. Thus, GC-MS is the preferred analyti-
cal tool for the analysis of volatile metabolites and has been 
employed in different areas of metabolomics research including 
plant metabolomics and screening for inborn errors of metabolism 
[189–192]. In addition to well-established databases such as the 
Fiehn Metabolomics library, GC-MS provides good reproducibil-
ity and a highly reproducible fragmentation so offering a potent 
tool for the identification of metabolites. Other advantages include 
high sensitivity and resolution, low cost, and ease of use of instru-
ments. The main limitation of GC-MS analysis is that it is limited 
to small volatile molecules, which means that this approach is of 
only limited application in global metabolic profiling studies. 
Moreover, the preparation of biological samples, such as bio-fluids, 
may be time-consuming and repetitive, this potentially leading to 
experimental error. Other problems such as product formation and 
degradation could occur during the ionization process. Moreover, 
during the derivatization reaction, nonvolatile metabolites could 
be converted into different forms of derivatives, leading to produc-
tion of fragments, so that different forms of the same parent 
metabolite exist together. While analyzing real samples such as 
human urine which has a high variability in terms of metabolite 
content, derivatization may occur at different rates of conversion 
depending on the different properties of metabolites, so potentially 
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affecting reproducibility and overall results dramatically [193]. To 
overcome problems such as inaccurate quantification, a standard 
compound may be used for both derivatized standard compounds 
and for data correction processes, such as normalization.

To generate reproducible mass spectra and highly transferable 
EI-MS spectral libraries, use of standardized MS electron ioniza-
tion energy of 70 eV is recommended to allow identification of 
compounds through mass spectral library matching, such as NIST 
and FiehnLib [194, 195].
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